
NAG C Library Function Document

nag_zhetrf (f07mrc)

1 Purpose

nag_zhetrf (f07mrc) computes the Bunch–Kaufman factorization of a complex Hermitian indefinite matrix.

2 Specification

void nag_zhetrf (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[],
Integer pda, Integer ipiv[], NagError *fail)

3 Description

nag_zhetrf (f07mrc) factorizes a complex Hermitian matrix A, using the Bunch–Kaufman diagonal

pivoting method. A is factorized as either A ¼ PUDUHPT if uplo ¼ Nag Upper, or A ¼ PLDLHPT if
uplo ¼ Nag Lower, where P is a permutation matrix, U (or L) is a unit upper (or lower) triangular matrix
and D is an Hermitian block diagonal matrix with 1 by 1 and 2 by 2 diagonal blocks; U (or L) has 2 by 2
unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and column interchanges are
performed to ensure numerical stability while keeping the matrix Hermitian.

This method is suitable for Hermitian matrices which are not known to be positive-definite. If A is in fact
positive-definite, no interchanges are performed and no 2 by 2 blocks occur in D.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A has been
factorized, as follows:

if uplo ¼ Nag Upper, the upper triangular part of A is stored and A is factorized as

PUDUHPT , where U is upper triangular;

if uplo ¼ Nag Lower, the lower triangular part of A is stored and A is factorized as

PLDLHPT , where L is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

f07 – Linear Equations (LAPACK) f07mrc

[NP3645/7] f07mrc.1

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the n by n Hermitian matrix A. If uplo ¼ Nag Upper, the upper triangle of A must be
stored and the elements of the array below the diagonal are not referenced; if uplo ¼ Nag Lower,
the lower triangle of A must be stored and the elements of the array above the diagonal are not
referenced.

On exit: the upper or lower triangle of A is overwritten by details of the block diagonal matrix D
and the multipliers used to obtain the factor U or L as specified by uplo.

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda � maxð1; nÞ.

6: ipiv½dim� – Integer Output

Note: the dimension, dim, of the array ipiv must be at least maxð1; nÞ.
On exit: details of the interchanges and the block structure of D.

More precisely, if ipiv½i� 1� ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A
were interchanged with the kth row and column.

If uplo ¼ Nag Upper and ipiv½i� 2� ¼ ipiv½i� 1� ¼ �l < 0,
di�1;i�1 di;i�1

di;i�1 dii

��
is a 2 by 2 pivot

block and the ði� 1Þth row and column of A were interchanged with the lth row and column.

If uplo ¼ Nag Lower and ipiv½i� 1� ¼ ipiv½i� ¼ �m < 0,
dii diþ1;i

diþ1;i diþ1;iþ1

��
is a 2 by 2 pivot

block and the ðiþ 1Þth row and column of A were interchanged with the mth row and column.

7: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_SINGULAR

The block diagonal matrix D is exactly singular.

NE_ALLOC_FAIL

Memory allocation failed.

f07mrc NAG C Library Manual

f07mrc.2 [NP3645/7]

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

If uplo ¼ Nag Upper, the computed factors U and D are the exact factors of a perturbed matrix Aþ E,
where

jEj � cðnÞ�P jU j jDj jUH jPT ;

cðnÞ is a modest linear function of n, and � is the machine precision.

If uplo ¼ Nag Lower, a similar statement holds for the computed factors L and D.

8 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper or
lower triangle is stored, as specified by uplo.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U or L are stored in the corresponding columns of the array a, but additional row interchanges
must be applied to recover U or L explicitly (this is seldom necessary). If ipiv½i� 1� ¼ i, for
i ¼ 1; 2; . . . ; n (as is the case when A is positive-definite), then U or L is stored explicitly (except for its
unit diagonal elements which are equal to 1).

The total number of real floating-point operations is approximately 4
3
n3.

A call to this function may be followed by calls to the functions:

nag_zhetrs (f07msc) to solve AX ¼ B;

nag_zhecon (f07muc) to estimate the condition number of A;

nag_zhetri (f07mwc) to compute the inverse of A.

The real analogue of this function is nag_dsytrf (f07mdc).

9 Example

To compute the Bunch–Kaufman factorization of the matrix A, where

A ¼

�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

1
CCA

0
BB@ :

9.1 Program Text

/* nag_zhetrf (f07mrc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

f07 – Linear Equations (LAPACK) f07mrc

[NP3645/7] f07mrc.3

int main(void)
{

/* Scalars */
Integer i, j, n, pda;
Integer exit_status=0;
Nag_UploType uplo_enum;
Nag_MatrixType matrix;

NagError fail;
Nag_OrderType order;
/* Arrays */
Integer *ipiv=0;
char uplo[2];
Complex *a=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07mrc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;

#else
pda = n;

#endif

/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||

!(a = NAG_ALLOC(n* n, Complex)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

{
uplo_enum = Nag_Lower;
matrix = Nag_LowerMatrix;

}
else if (*(unsigned char *)uplo == ’U’)

{
uplo_enum = Nag_Upper;
matrix = Nag_UpperMatrix;

}
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}

if (uplo_enum == Nag_Upper)
{

for (i = 1; i <= n; ++i)
{

for (j = i; j <= n; ++j)
Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);

}
Vscanf("%*[^\n] ");

f07mrc NAG C Library Manual

f07mrc.4 [NP3645/7]

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
}

/* Factorize A */
f07mrc(order, uplo_enum, n, a, pda, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07mrc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print factor */
x04dbc(order, matrix, Nag_NonUnitDiag, n, n, a, pda, Nag_BracketForm,

"%7.4f", "Details of Factorixation", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print pivot indices */
Vprintf("\nIPIV\n");
for (i = 1; i <= n; ++i)

Vprintf("%3ld%s", ipiv[i-1], i%7==0 ?"\n":" ");
Vprintf("\n");

END:
if (ipiv) NAG_FREE(ipiv);
if (a) NAG_FREE(a);
return exit_status;

}

9.2 Program Data

f07mrc Example Program Data
4 :Value of N
’U’ :Value of UPLO

(-1.36, 0.00) (1.58, 0.90) (2.21,-0.21) (3.91, 1.50)
(-8.87, 0.00) (-1.84,-0.03) (-1.78, 1.18)

(-4.63, 0.00) (0.11, 0.11)
(-1.84, 0.00) :End of matrix A

9.3 Program Results

f07mrc Example Program Results

Details of Factorixation
1 2 3 4

1 (-1.3600, 0.0000) (3.9100, 1.5000) (0.3100,-0.0433) (-0.1518,-0.3743)
2 (-1.8400, 0.0000) (0.5637,-0.2850) (0.3397,-0.0303)
3 (-5.4176, 0.0000) (0.2997,-0.1578)
4 (-7.1028, 0.0000)

IPIV
-4 -4 3 4

f07 – Linear Equations (LAPACK) f07mrc

[NP3645/7] f07mrc.5 (last)

	f07mrc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	a
	pda
	ipiv
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

